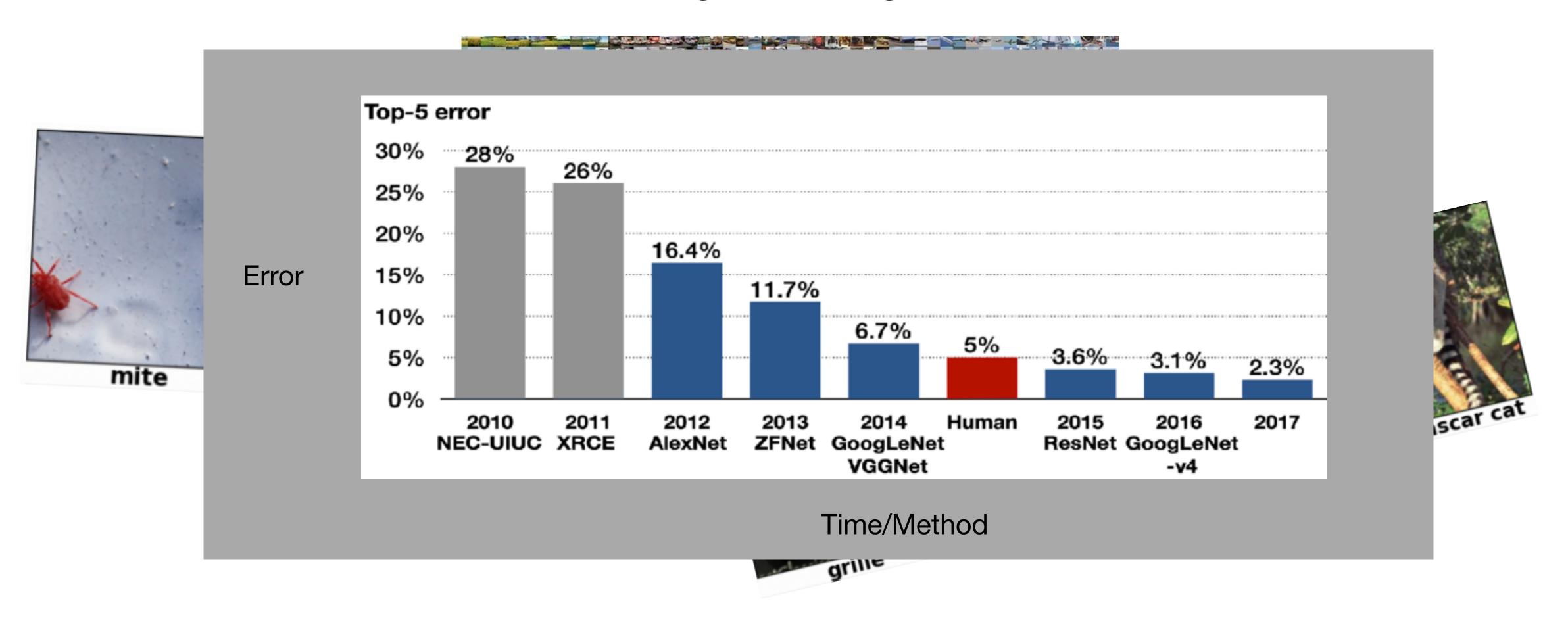


Travel back in time to 2017!

2017: Unbelievable progress in machine learning!

ImageNet progress!



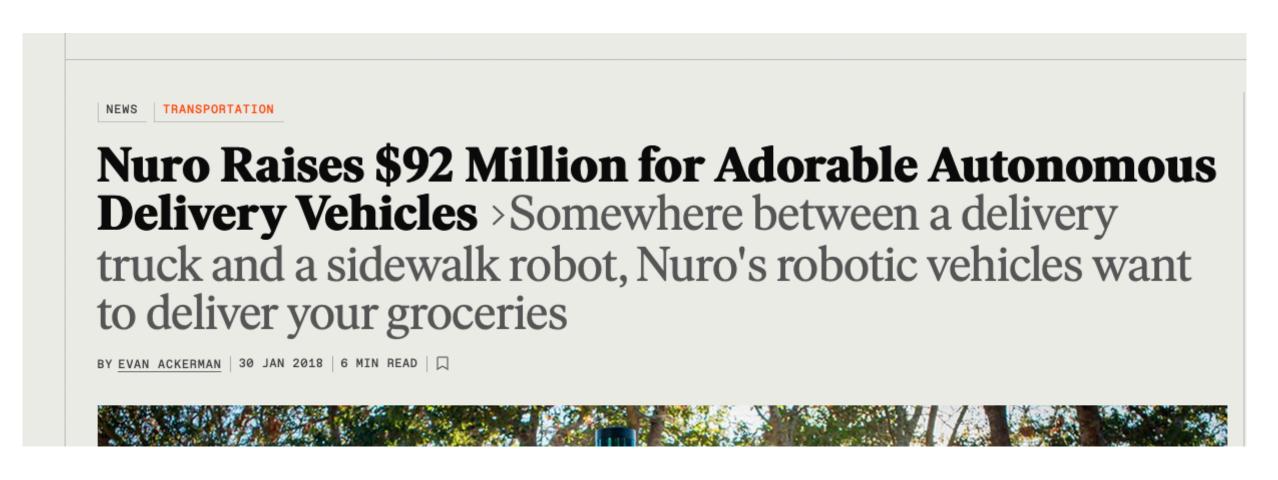
2017: Unbelievable progress in machine learning!

Self driving cars!

Robotaxi Revolutions Don't Come Cheap, So Zoox Boosts Funding By \$500 Million

Alan Ohnsman Forbes Staff

I follow technology-driven changes that are reshaping transportation.

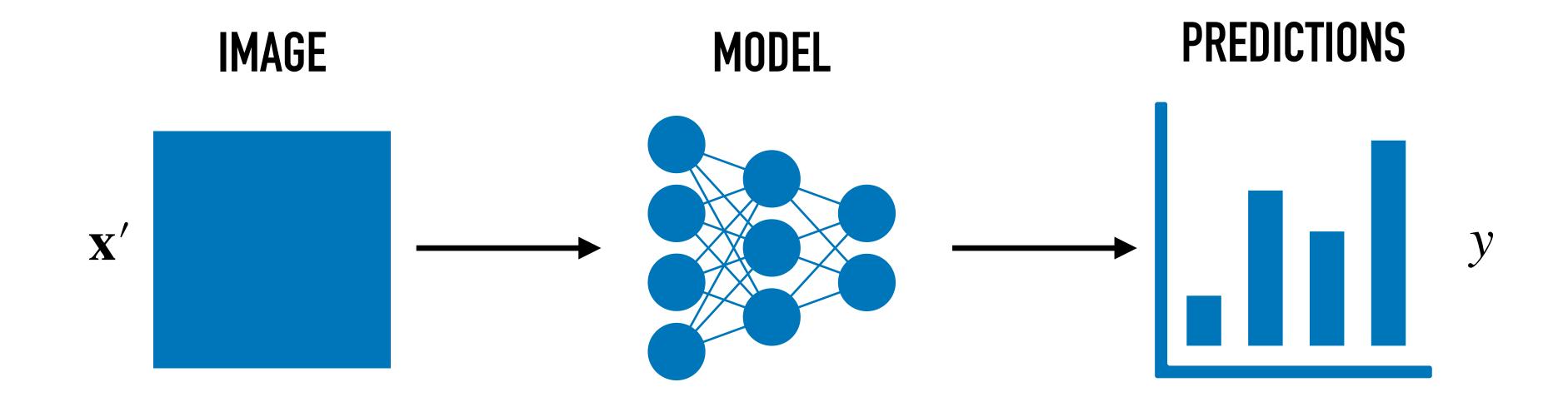


The New York Times

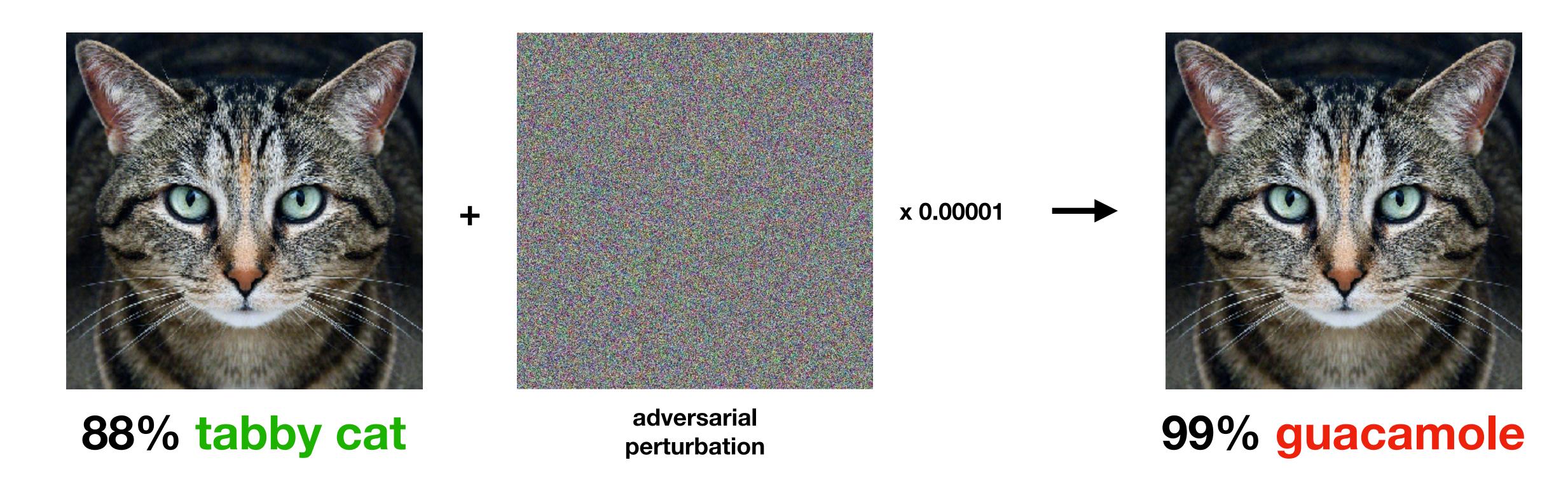
General Motors to Buy Cruise Automation in Push for Self-Driving Cars

Does ML really work that well yet?

Suppose we have a ML model mapping inputs -> probabilities



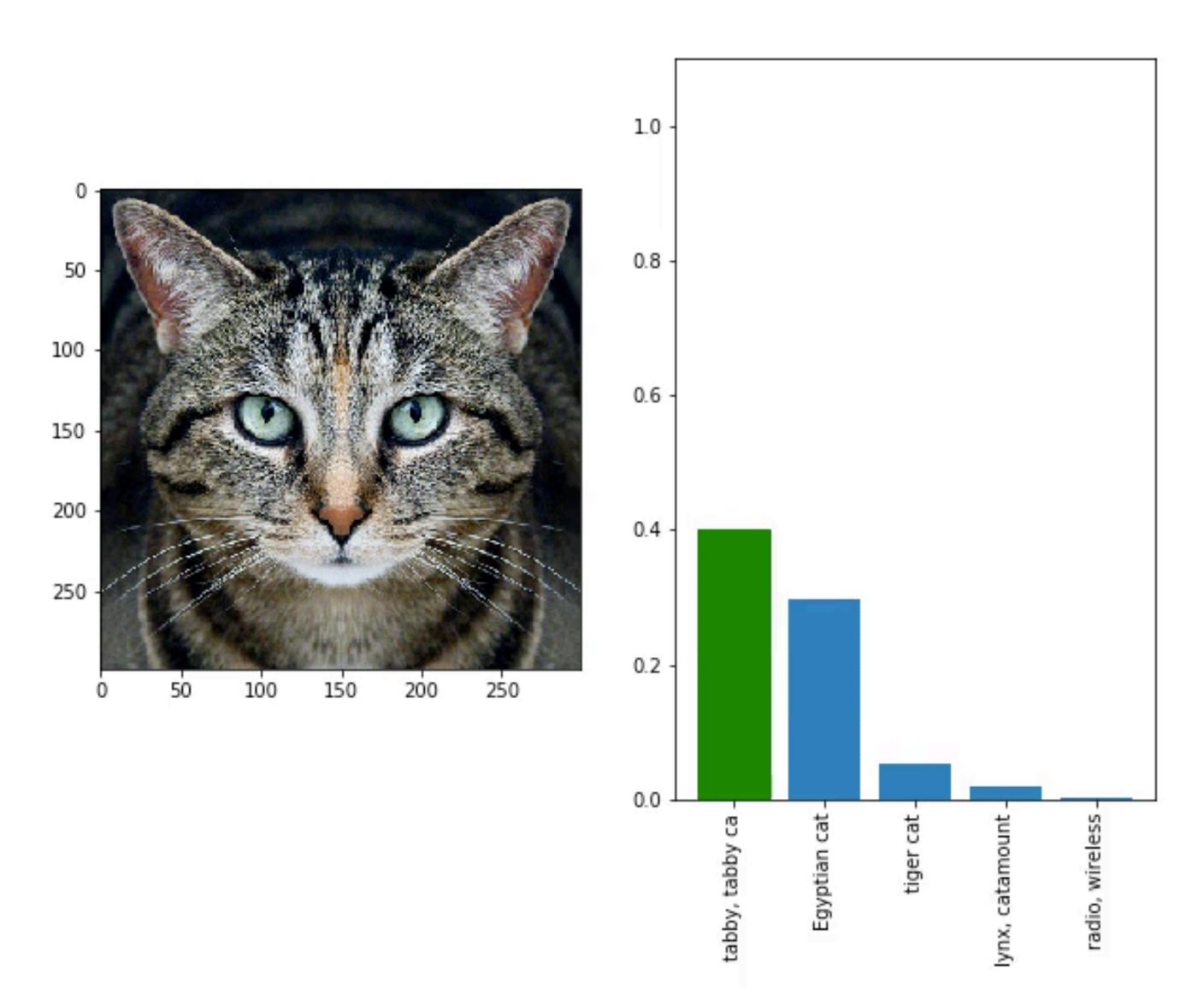
- Suppose we have a ML model mapping inputs -> probabilities
- Imperceptible perturbations to an input can change our neural network's prediction



Given: Input image x, target label y

Optimize:

arg max
$$P(y | x')$$
 x' subject to $d(x, x') < \epsilon$

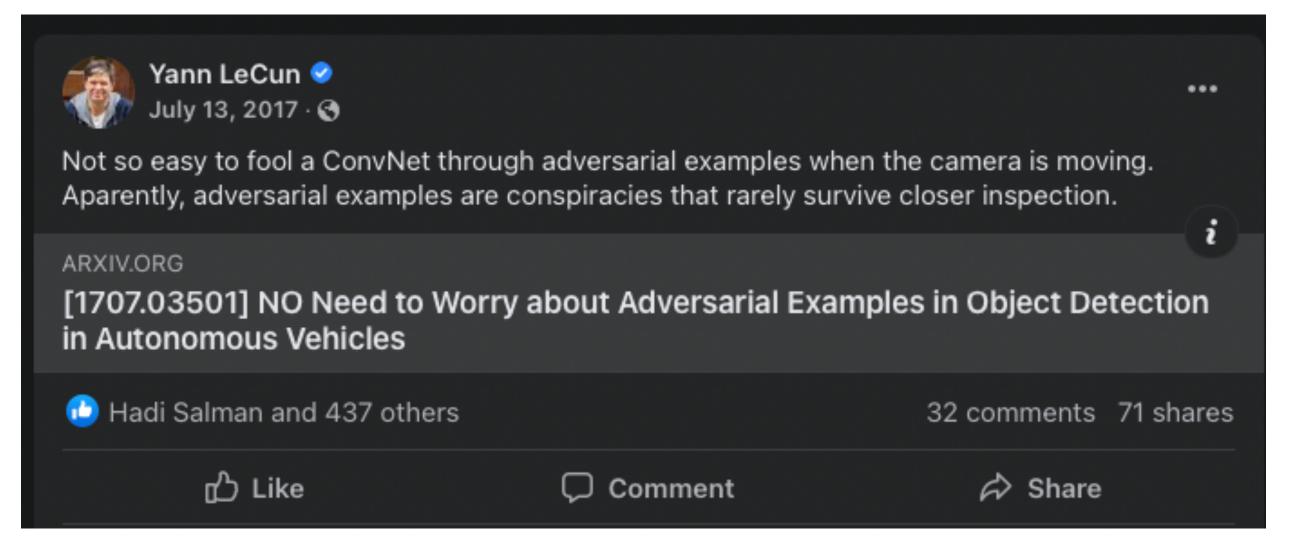


Do adversarial examples work in the physical world?

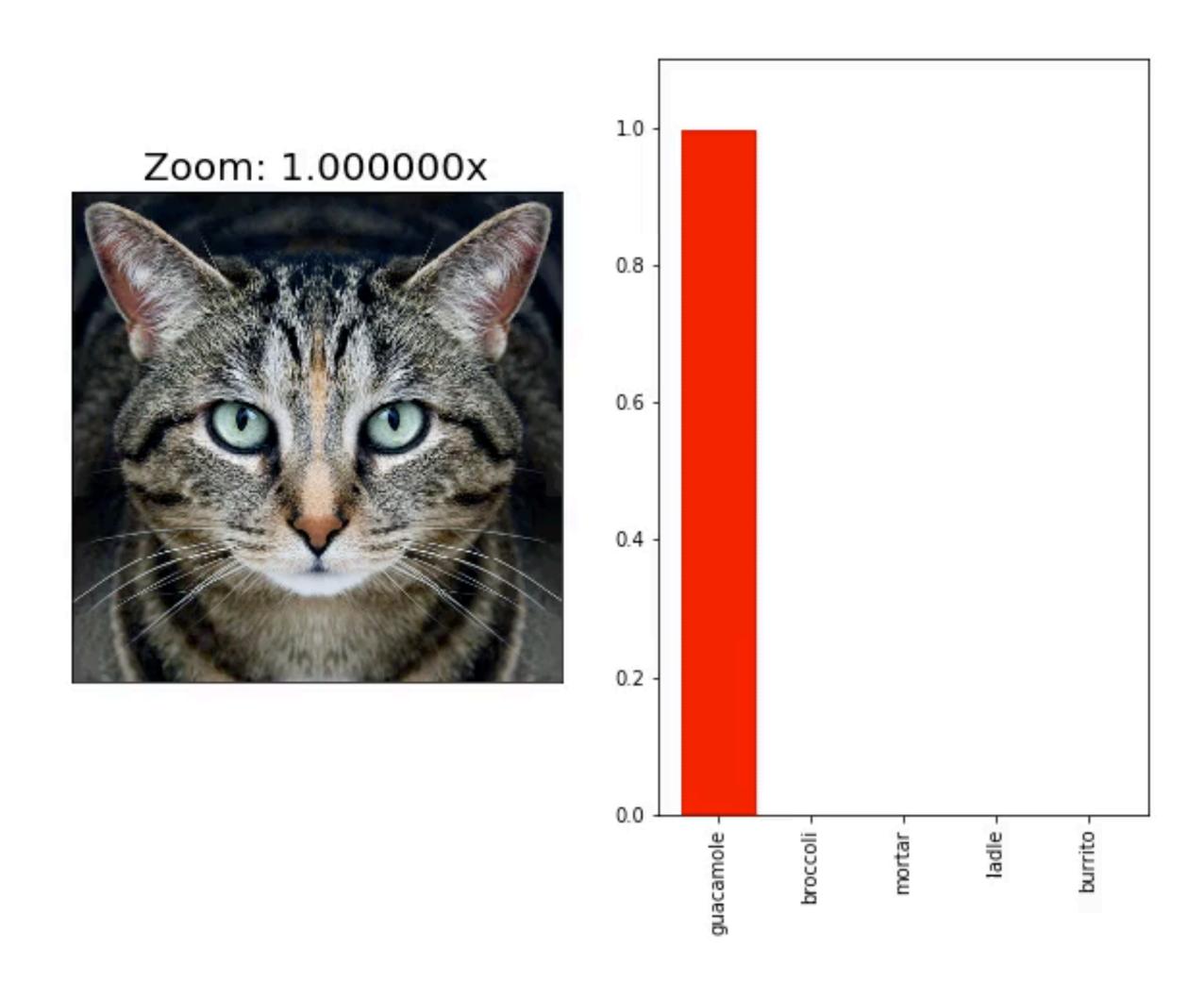
Maybe not?

Foveation-based Mechanisms Alleviate Adversarial Examples (Luo et al. 2015)

NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles (Lu et al. 2017)

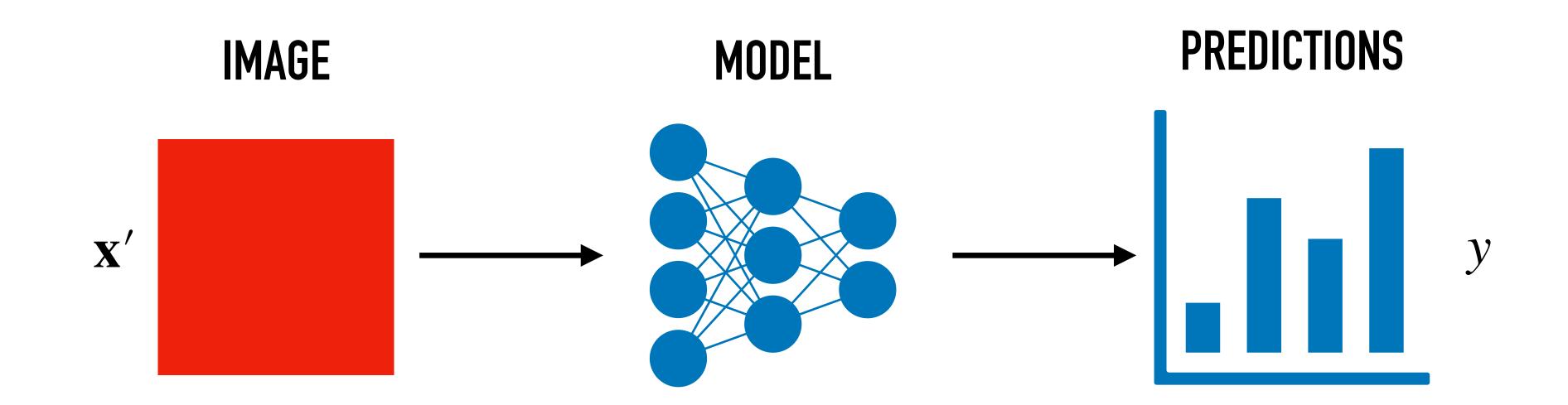


Standard examples are fragile



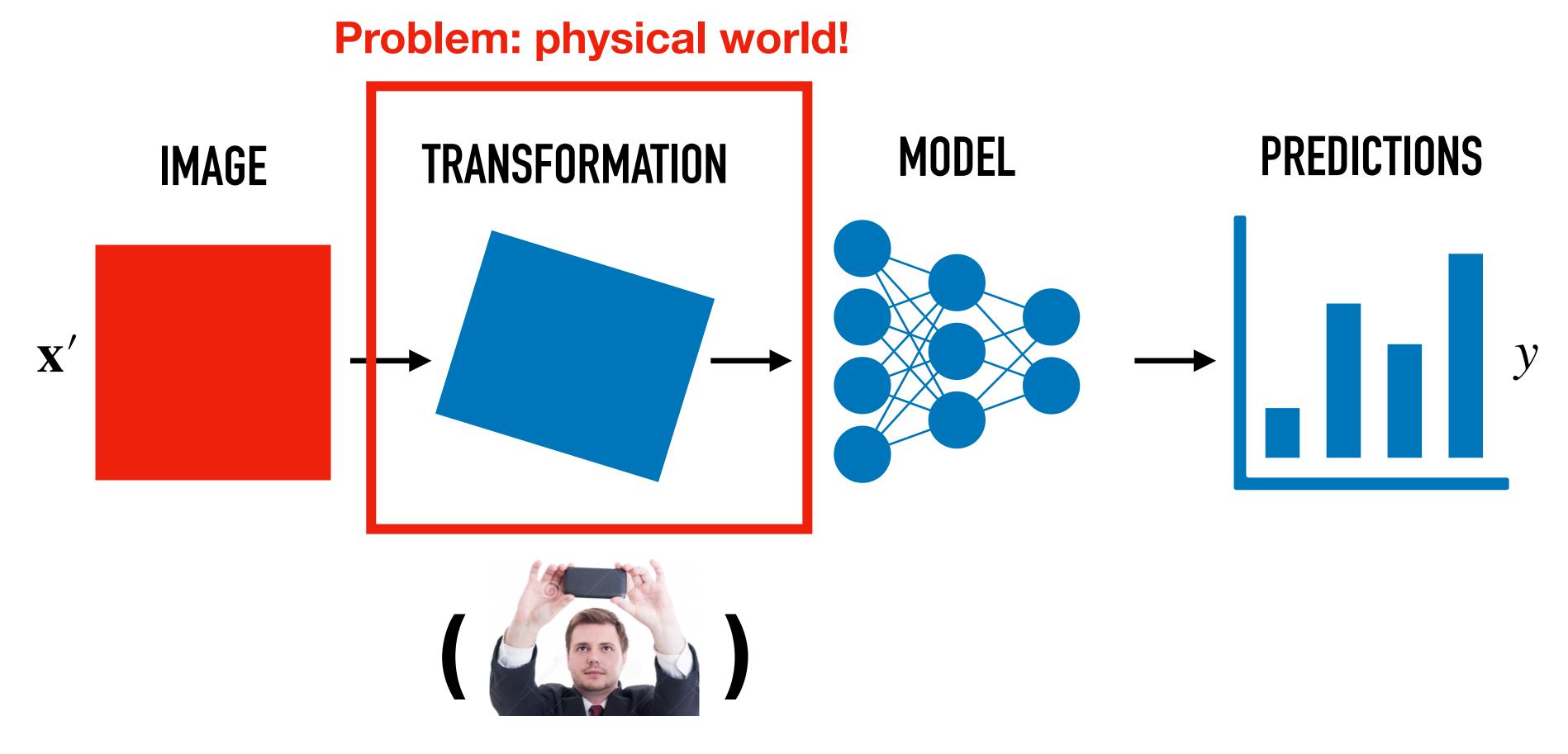
Are adversarial examples fundamentally fragile?

Standard adversarial examples



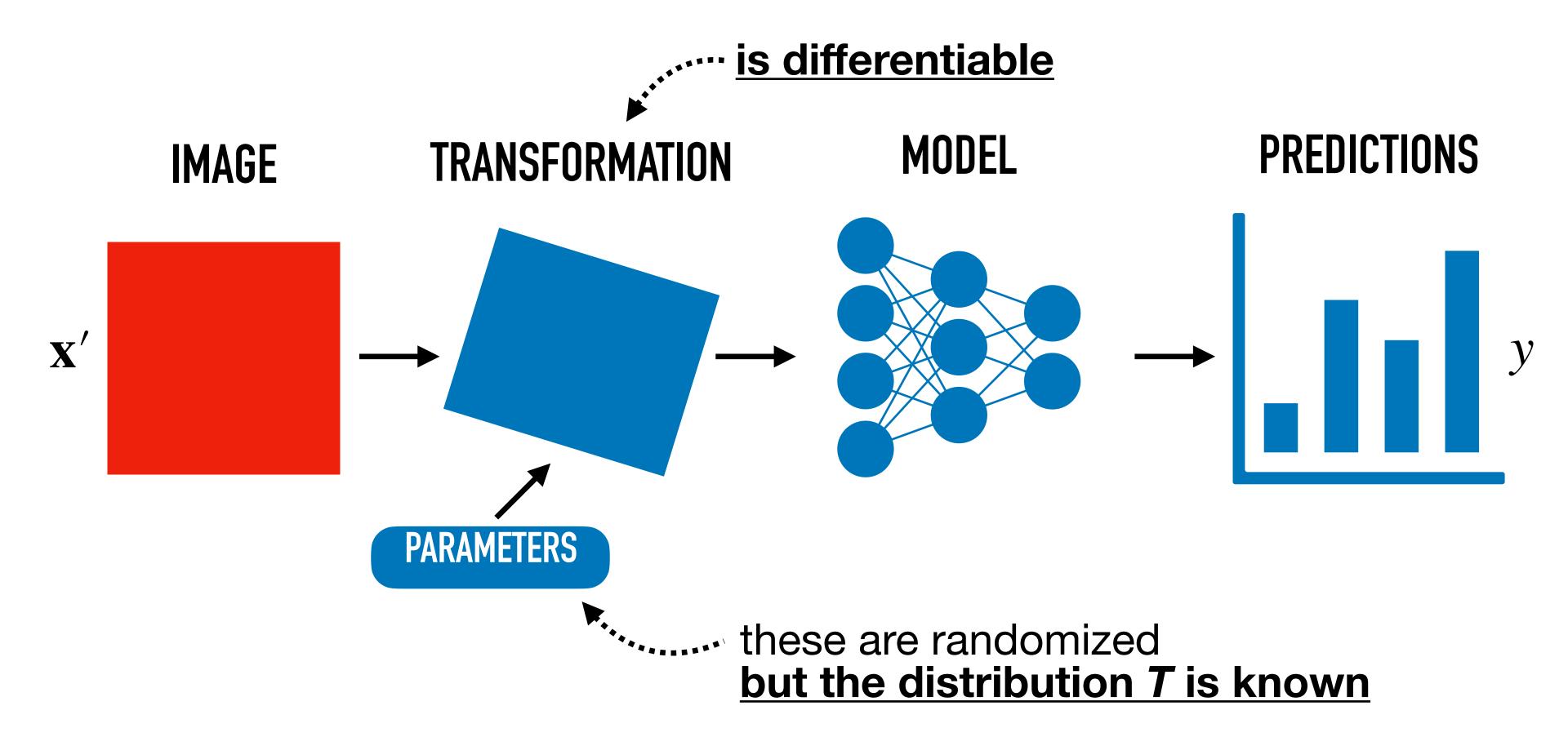
optimize $P(y \mid x')$ using gradient descent

Physical world adversarial examples



Challenge: No direct control over model input

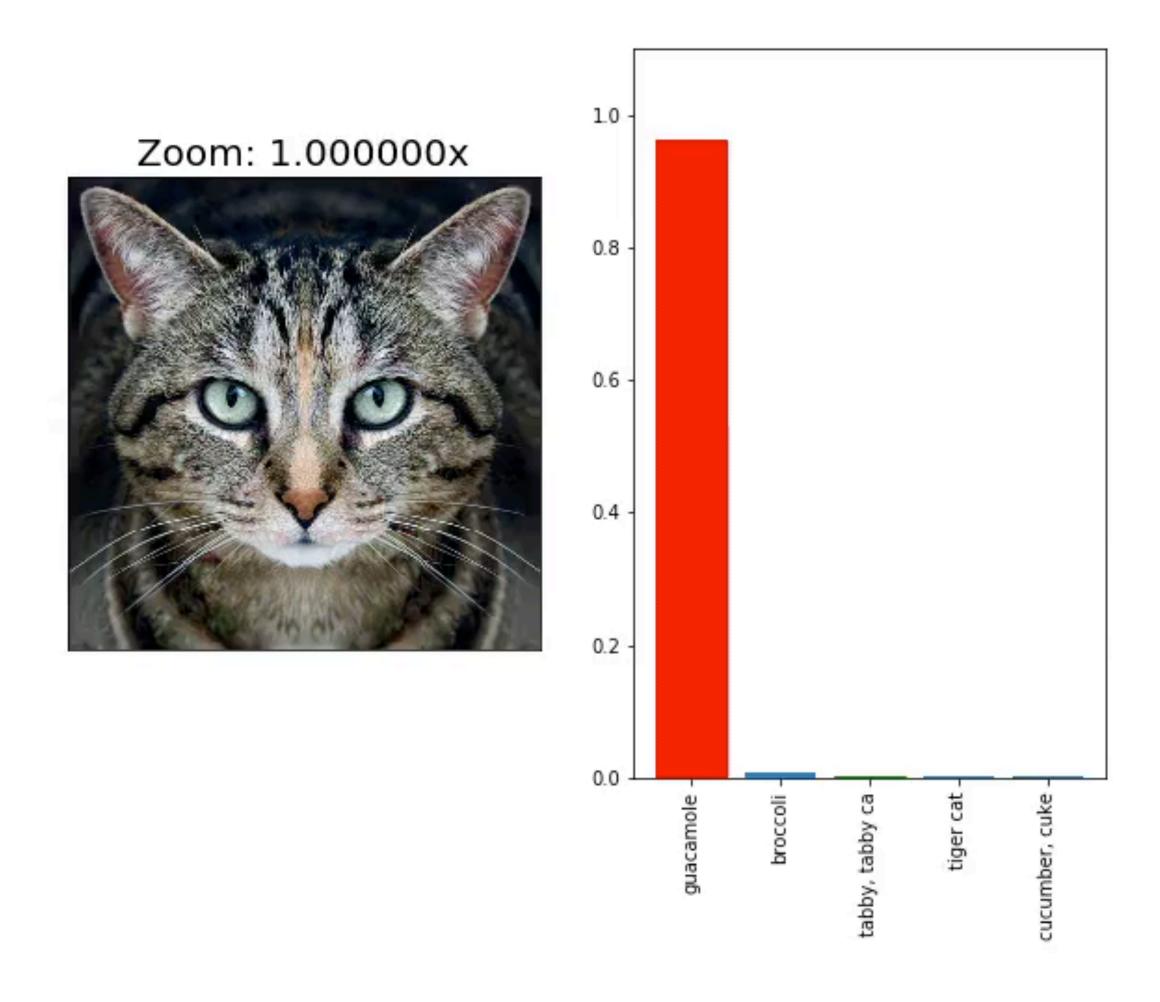
Solution: Expectation Over Transformation Attack



optimize $\mathbb{E}_{t \sim T} [P(y \mid t(\mathbf{x}'))]$ using gradient descent

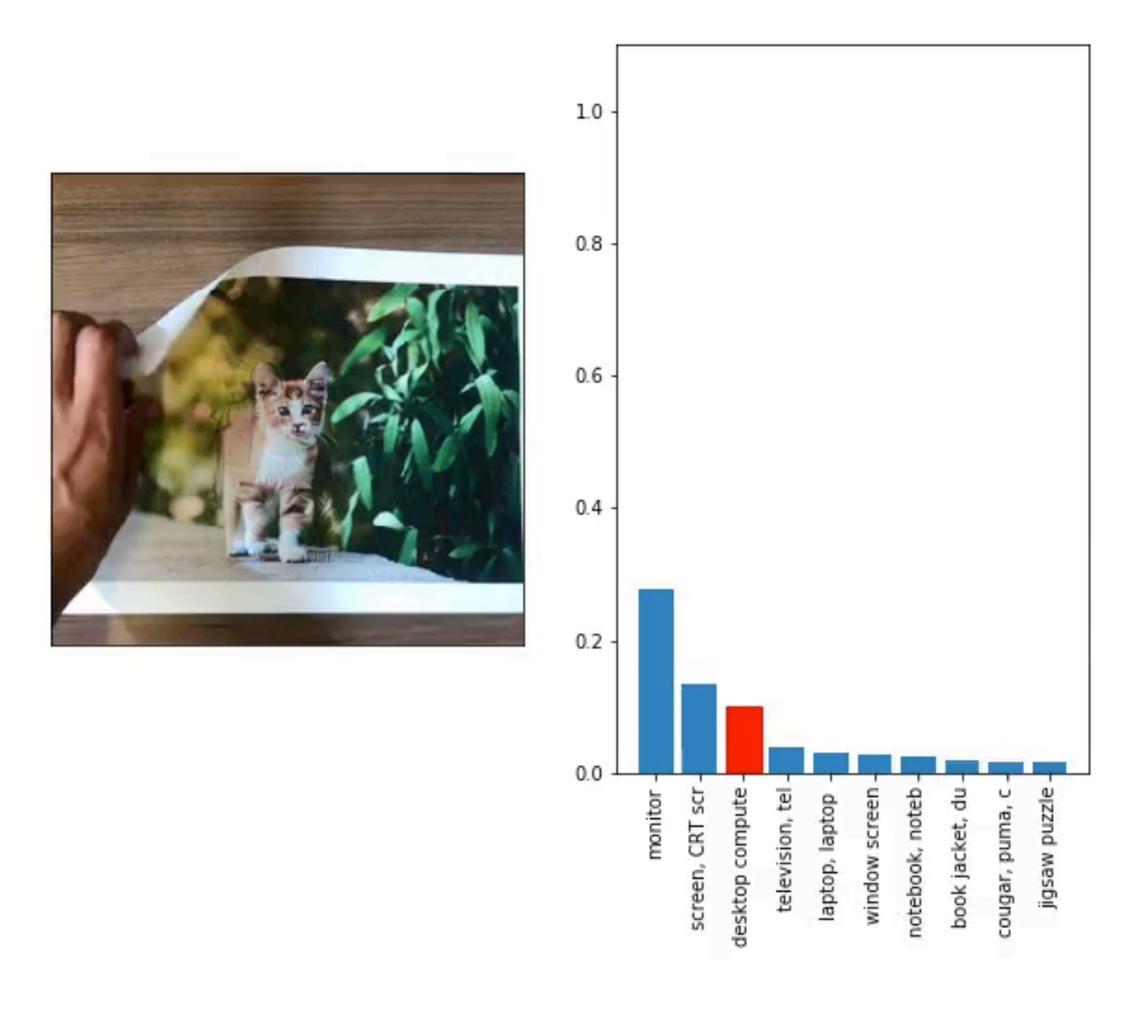
(sampling, chain rule, differentiating through t)

Attack produces robust examples



 $T = \{ rescale from 1x to 5x \}$

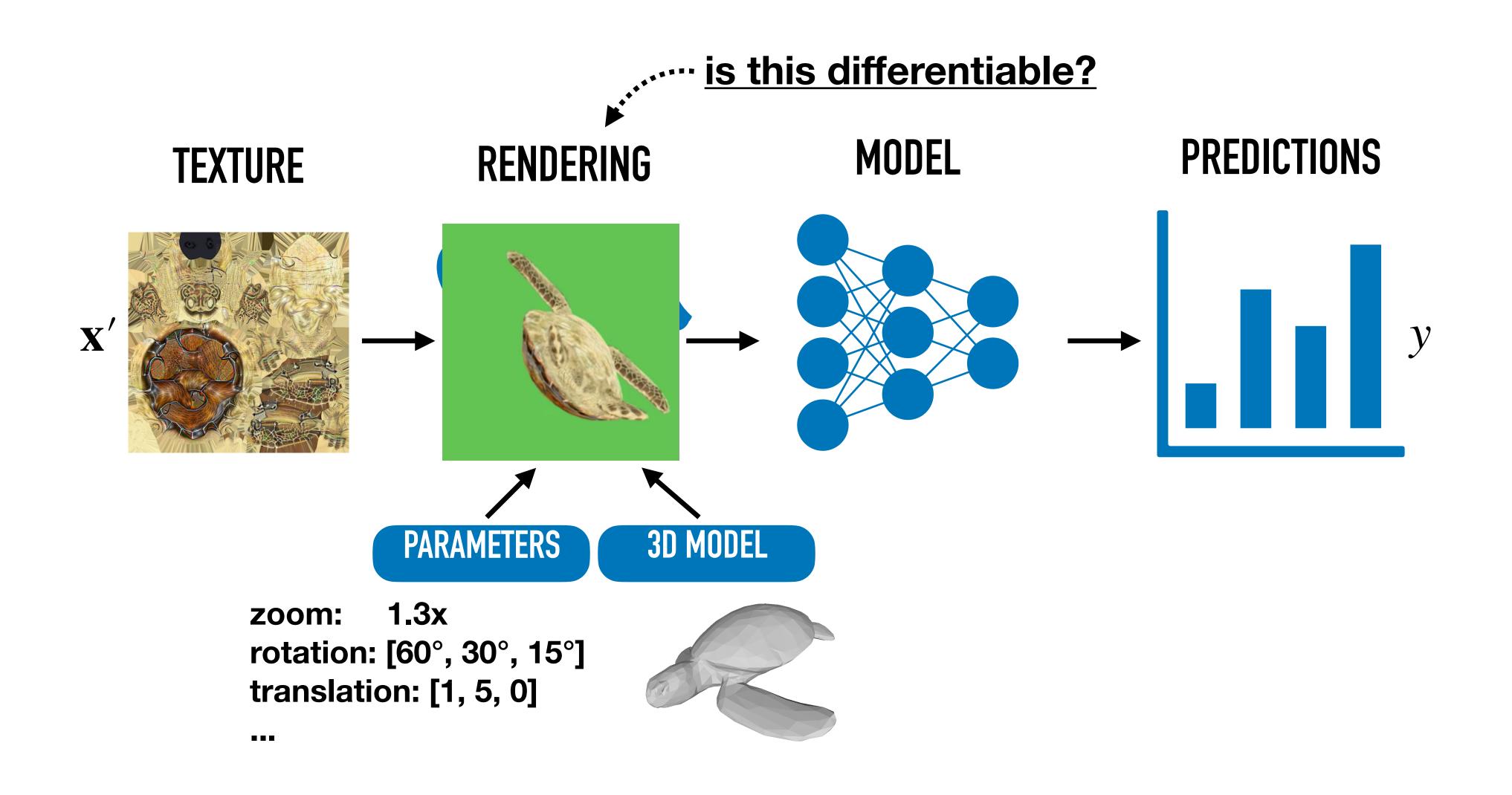
EOT produces robust physical-world examples



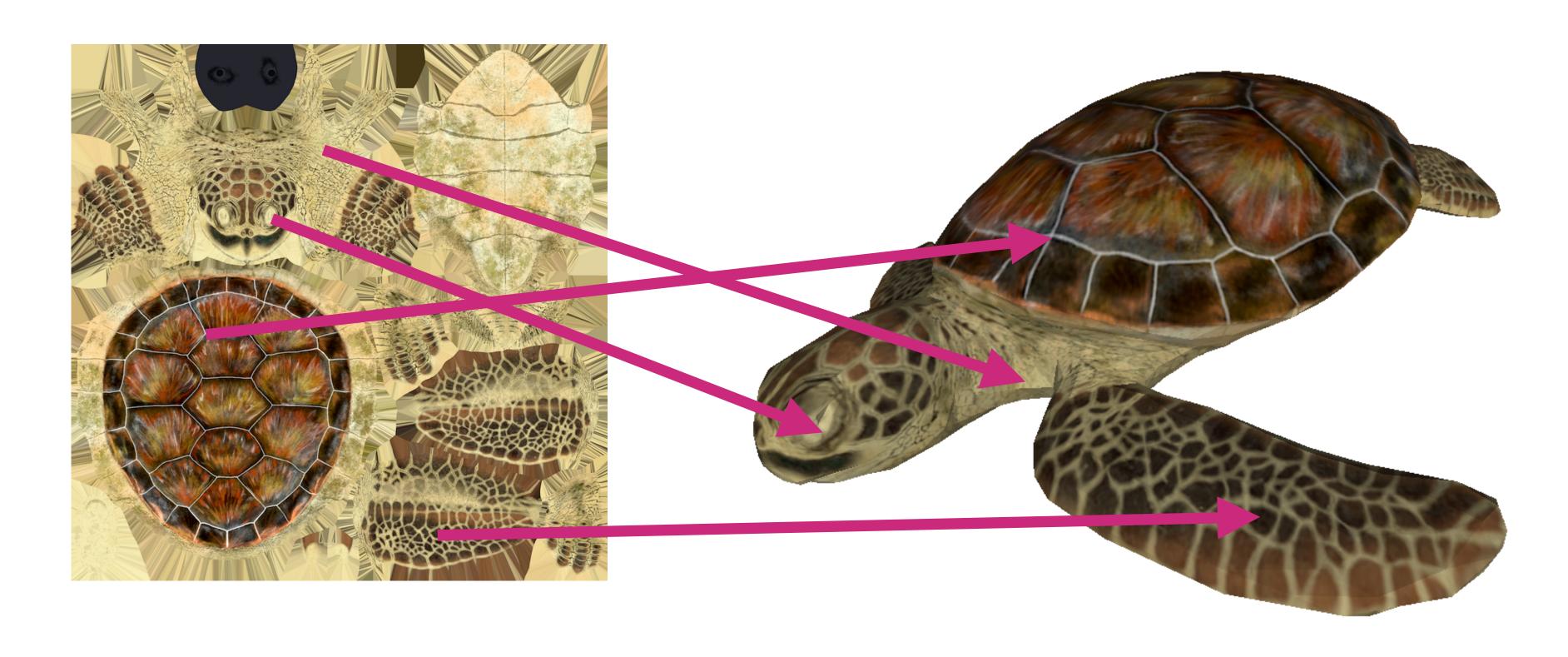
T = {rescale + rotate + translate + skew}

Can we make this work with 3D objects?

Physical world 3D processing pipeline

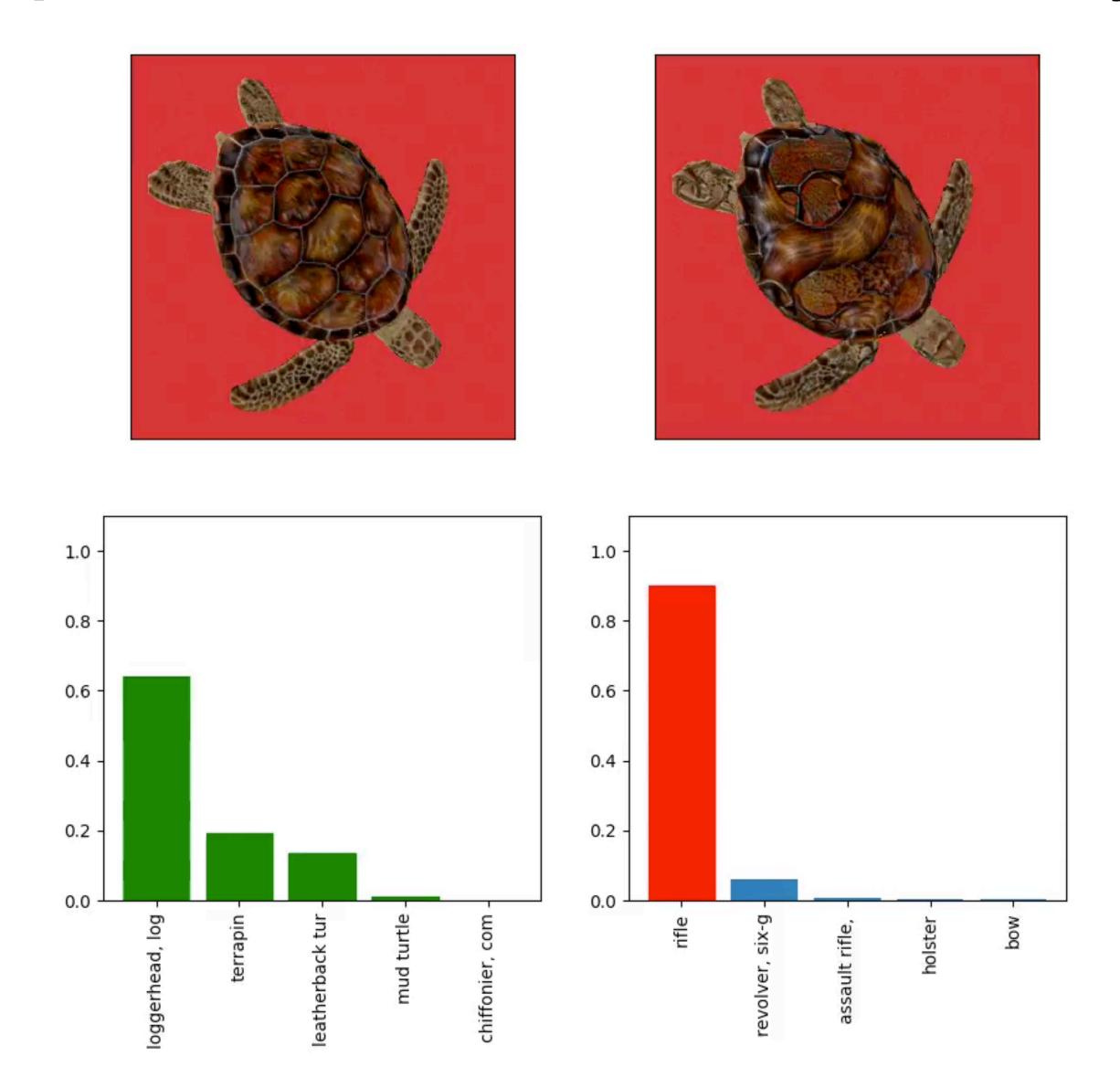


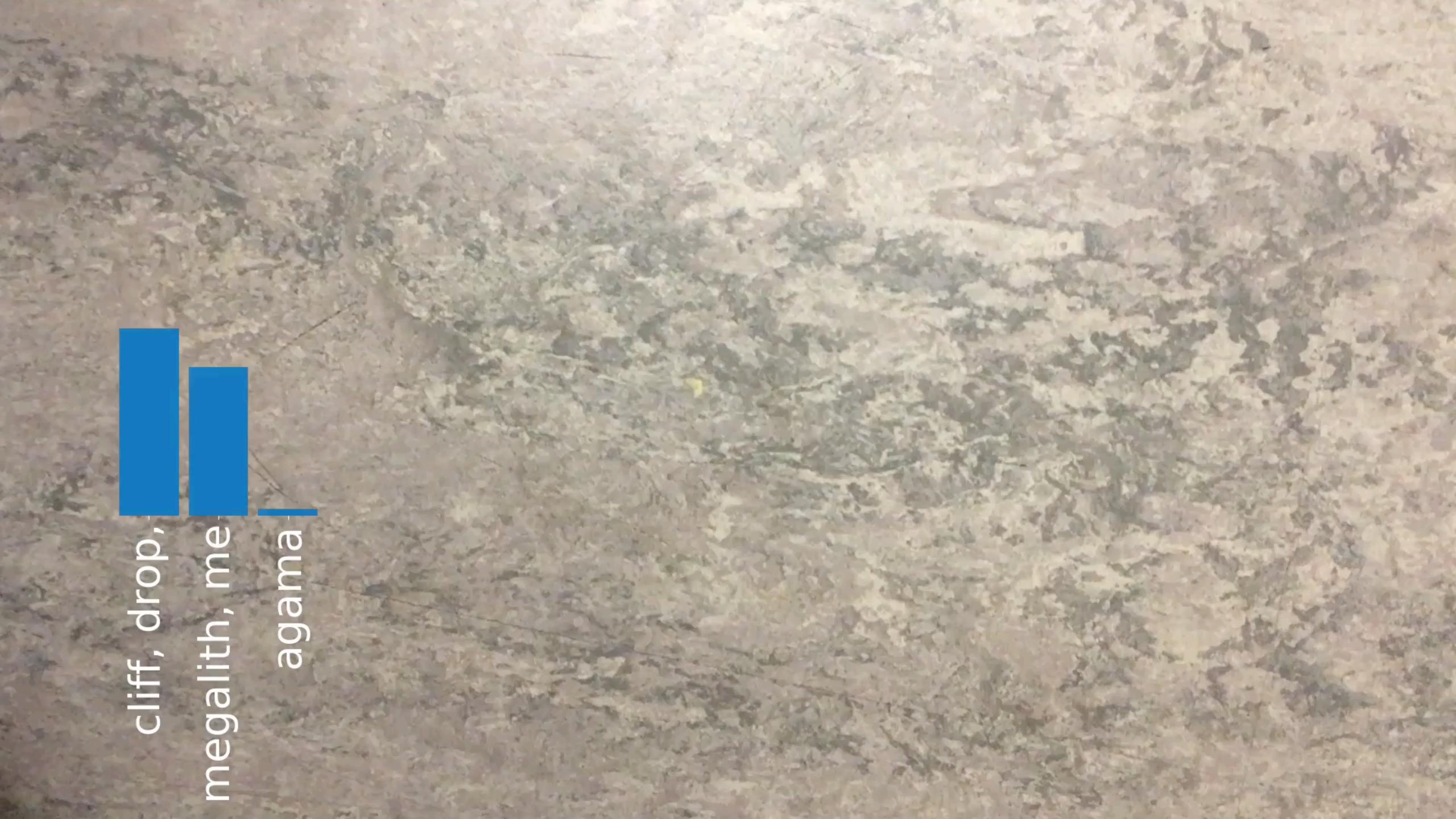
Differentiable rendering



- For any pose, 3D rendering is differentiable with respect to texture
- Simplest renderer: linear transformation of texture

EOT produces 3D adversarial objects





EOT reliably produces 3D adversarial objects

Inputs		Classification accuracy	Attacker success rate	Distortion (I2)
2D	Original	70%	N/A	
	Adversarial	0.9%	96.4%	5.6 × 10 ⁻⁵
3D	Original	84%	N/A	
	Adversarial	1.7%	84.0%	6.5 × 10 ⁻⁵

Implications

- Defenses based on randomized input transformations are insecure
- Adversarial examples / objects are a physical-world concern